Главная | СНиПы | Контакты
 Справочник строительных материалов

Навигация: Главная Классификация и свойства строительных материалов Функциональные (эксплуатационно-технические и технологические) свойства. Физические свойства

Главное меню
Последние материалы
Стоимость укладки 1 метра асфальта dsholding.ru
Функциональные (эксплуатационно-технические и технологические) свойства. Физические свойства
Индекс материала
Функциональные (эксплуатационно-технические и технологические) свойства. Физические свойства
продолжение
Все страницы

Насыпная плотность ρн (кг/м3; г/см3) — отношение массы материала в насыпном состоянии к его объему. Насыпную плотность определяют для сыпучих материалов (песка, щебня, цемента и т. п.). В ее величине отражается влияние не только пор в каждом зерне (или куске), но и межзерновых пустот в рыхлонасыпанном объеме материала.

Насыпная плотность материалов учитывается при расчете складов, способа перевозки, при расчете составов композиционных материалов.

 

Пористость П — относительная величина, показывающая, какая часть объема материала занята внутренними порами. По значению пористость дополняет коэффициент плотности до 1 или до 100 % и определяется по формуле

 

П=1- ρоили П = (1 - ρо/ρ) 100%. (1.6)

 

Экспериментальный (прямой) метод определения пористости основан на замещении порового пространства в материале сжиженным гелием или ртутью.

Поры представляют собой ячейки, не заполненные структурным материалом. По величине они могут быть от миллионных долей миллиметра до нескольких миллиметров.

Более крупные поры, например, между зернами сыпучих материалов, или полости, имеющиеся в некоторых изделиях (пустотелый кирпич, панели из железобетона), называют пустотами. Поры обычно заполнены воздухом или водой; в пустотах, особенно в широкополосных, вода не может задерживаться и вытекает.

Пористость материалов колеблется в широких пределах:

от 0,2...0,8 % — у гранита и мрамора

до 75...85 % у теплоизоляционного кирпича и у ячеистого бетона

и свыше 90 % —у пенопластов и минеральной ваты.

От величины пористости и ее характера (размера и формы пор, равномерности распределения пор по объему материала, их структуры — сообщающиеся поры или замкнутые) зависят важнейшие свойства материала: плотность, прочность, долговечность, теплопроводность, водопоглощение, водонепроницаемость и др. Например, открытые поры увеличивают проницаемость и водопоглощение материала и ухудшают его морозостойкость. Однако в звукопоглощающих материалах открытые поры желательны, так как они поглощают звуковую энергию. Увеличение закрытой пористости за счет открытой повышает долговечность материала и уменьшает его теплопроводность.

Сведения о пористости материала позволяют определять целесообразные области его применения.

 

Свойства, определяющие отношение материалов к различным физическим процессам. Среди физических процессов наибольшее значение в практике имеют воздействия водной и паровой среды, тепловые воздействия, распространение звуковых волн, электротока, ядерных излучений и т. п. Отношение мате риала к статическому или циклическому воздействию воды или пара характеризуется гидрофизическими свойствами (гигроскопичность, капиллярное всасывание, водопоглощение, водостойкость, водопроницаемость, паропроницаемость, влажностные деформации, морозостойкость).

Гигроскопичность W (%)— способность материала поглощать и конденсировать водяные пары из воздуха.

Гигроскопичность вызывается сорбцией, представляющей собой физико-химический процесс поглощения водяных паров из воздуха как в результате их адсорбции на внутренней поверхности материала, так и капиллярной конденсации. Капиллярная конденсация возможна только в капиллярах с малым радиусом (менее 10-7 м), так как разность давлений насыщенного водяного пара над вогнутой поверхностью мениска и плоской поверхностью в капиллярах с большим радиусом несущественна. Гигроскопичность, зависит как от свойств материала — величины и характера пористости, так и от условий внешней среды — температуры и относительной влажности, а для сыпучих материалов также от их растворимости в воде и дисперсности и снижением температуры воздуха. Этот процесс носит обратимый характер. Гигроскопичность характеризуется величиной отношения массы поглощен ной материалом влаги, при относительной влажности воздуха 100% и температуре.20°С, к массе сухого материала, выраженной в процентах.

Капиллярное всасывание (подъем) воды пористым материалом происходит по капиллярным порам, когда часть конструкции соприкасается с водой. Например, грунтовые воды могут подниматься по капиллярам и увлажнять нижнюю часть стены здания. Капиллярными называют поры с такими условными радиусами, при которых их капиллярный потенциал (потенциальная энергия поля капиллярных сил, отнесенных к единице массы жидкости) значительно больше потенциала поля тяжести.

Капиллярное всасывание характеризуется высотой поднятия уровня воды в капиллярах материала, количеством поглощенной воды и интенсивностью всасывания.

При качественном рассмотрении явления высоту поднятия жидкости h в капилляре можно определить по формуле Жюрена:

h = 2 σ - cos θ/( r ρ g ), (1.7)

где σ — поверхностное натяжение; θ — краевой угол смачивания; r — радиус капилляра; ρ — плотность жидкости; g — ускорение свободного падения.

Более точно, учитывая неправильную форму пор в материале и их изменяющееся поперечное сечение, высоту всасывания воды определяют экспериментально по методу «меченых атомов» либо по измерению электропроводности материала.

Объем воды, поглощенный материалом путем капиллярного всасывания за время t, в начальной стадии подчиняется параболическому закону:

V 2 = K t , (1.8)

где К — константа всасывания. Уменьшение интенсивности всасывания (т. е. значения К) указывает на улучшение структуры материала (например, бетона) и повышение его морозостойкости.

Водопоглощение (% или без размерности)— свойство материала поглощать и удерживать воду при непосредственном с ней соприкосновении. Количество поглощенной образцом материала воды, отнесенное к его массе в сухом состоянии, называют водопоглощением по массе Wm , а отнесенные к его объему W о — водопоглощением по объему:

Wm = [( m в — mc )/ mc ] 100%, (1.9)

W о = [( m в — mc )/( p в V )100%, (1.10)

где mс и mв— масса материала соответственно в сухом и насыщенном водой состоянии, кг; рв — плотность воды, кг/м3.

После почленного деления этих двух выражений устанавливается зависимость:

W 0 = Wm d. (1.11)

Для оперативного контроля влажности преимущественно сыпучих материалов (например, заполнителей для бетона — песка, щебня) применяют диэлькометрический и нейтронный методы. Диэлькометрический метод измерения основан на зависимости между влажностью и диэлектрической проницаемостью материала. В нейтронном методе используется связь влажности и степени замедления быстрых нейтронов, проходящих через материал.

Водопоглощение по объему отражает степень заполнения пор материала водой. Так как вода проникает не во все замкнутые поры и не удерживается в открытых пустотах, объемное водопоглощение меньше истинной пористости.

Коэффициент насыщения пор водой — отношение водопоглощения по объему к пористости

K н = Wo(1.12)

позволяет оценить структуру материала. Он может изменяться от 0 (все поры в материале замкнуты) до 1 (все поры открыты, т. е. W0 = П). Уменьшение Кн (при той же пористости) свидетельствует о сокращении открытой пористости, что проявляется в повышении морозостойкости.

При насыщении материала водой существенно изменяются его свойства: увеличивается плотность и теплопроводность, происходят некоторые структурные изменения в материале, вызывающие появление в нем внутренних напряжений, что, как правило, приводит к снижению прочности материала.

Влажностные деформации — изменение размеров и объема материала при изменении его влажности. Уменьшение размеров и объема материала при его высыхании называют усадкой (усушкой), а увеличение размеров и объема при увлажнении вплоть до полного насыщения материала водой — набуханием (разбуханием). Усадка возникает и увеличивается в результате уменьшения толщины слоев воды, окружающих частицы материала, и действием внутренних капиллярных сил, стремящихся сблизить частицы материала. Набухание связано с тем, что полярные молекулы воды, проникая между частицами или волокнами, слагающими материал, как бы расклинивают их, при этом утолщаются гидратные оболочки вокруг частиц исчезают внутренние мениски, а с ними и капиллярные силы. Материалы высокопористого и волокнистого строения, способные поглощать много воды, характеризуются большой усадкой (древесина поперек волокон 30...100 мм/м; ячеистый бетон 1...3 мм/м; кирпич керамический 0,03...0,1 мм/м; тяжелый бетон 0,3...0,7 мм/м; гранит 0,02...0,06 мм/м).

Водостойкость — способность материала сохранять прочность при увлажнении. Числовой характеристикой водостойкости является коэффициент размягчения

К p = R нас / Rc ух , (1.13)

где Rнас и Rсух — предел прочности при сжатии соответственно водонасыщенного и сухого образца, МПа.

Этот коэффициент изменяется от 0 (полностью размокающие материалы, например необожженные глиняные материалы) до величины, близкой к 1 (сталь, стекло, гранит). К водостойким относятся строительные материалы, коэффициент размягчения которых больше 0,8. Эти материалы разрешается применять в сырых местах без специальных мер по их защите от увлажнения.

Воздухостойкость — способность материала выдерживать циклические воздействия увлажнения и высушивания без заметных деформаций и потери механической прочности.

Многократное гигроскопическое увлажнение и высушивание вызывает в материале знакопеременные напряжения и со временем приводит к потере им несущей способности.

Влагоотдача (кг/сут) — свойство, характеризующее скорость высыхания материала, при наличии соответствующих условий в окружающей среде (понижение влажности, нагрев, движение воздуха).

Влагоотдача обычно характеризуется количеством воды, которое материал теряет в сутки при относительной влажности воздуха 60 % и температуре 20 °С. В естественных условиях вследствие влагоотдачи, через некоторое время после строительства, устанавливается равновесие между влажностью строительных конструкций и окружающей средой. Такое состояние равновесия называют воздушно-сухим (воздушно-влажным) состоянием.

Водопроницаемость — способность материала пропускать воду под давлением. Характеристикой водопроницаемости служит количество воды, прошедшее в течение 1 с через 1 м2 поверхности материала при заданном давлении воды.

Для определения водопроницаемости используют различные устройства, позволяющие создавать нужное одностороннее давление воды на поверхность материала. Методика определения зависит от назначения и разновидности материала. Водопроницаемость зависит от плотности и строения материала. Чем больше в материале пор и чем эти поры крупнее, тем больше его водопроницаемость.

При выборе материалов для специальных целей (кровельные материалы, бетоны для гидротехнических сооружений, трубы и др.) чаще оценивают не водопроницаемость, а водонепроницаемость характеризуемую периодом времени, по истечении которого появляются при знаки просачивания воды под определенным давлением через образец испытуемого материала (кровельные материалы), или предельной величиной давления воды (Па), при котором вода не проходит через образец (например, бетон).

Паропроницаемость и газопроницаемость — способность материала пропускать через свою толщу водяной пар или газы, (воздух). Паропроницаемость характеризуется коэффициентом паропроницаемости, численно равным количеству водяного пара, проникающего через слой материала толщиной 1 м, площадью 1 м2 в течение 1 секунды, и разностью парциальных давлений пара в 133,3 Па. Аналогичным коэффициентом оценивается и газопроницаемость (воздухопроницаемость). Эти характеристики определяются для комплексной оценки физических свойств строительного материала или при его специальном назначении. Материалы для стен жилых зданий должны обладать определенной проницаемостью (стена должна «дышать»), т. е. через наружные стены происходит естественная вентиляция. Наоборот, стены и покрытия влажных помещений необходимо защищать с внутренней стороны от проникновения в них водяного пара, особенно зимой, когда содержание пара внутри помещения значительно больше, чем снаружи, и пар, проникая в холодную зону ограждения, конденсируется, резко повышает влажность в этих местах. В ряде случаев необходима практически полная газонепроницаемость (емкости для хранения газов и др.).

Морозостойкость — свойство материала, насыщенного водой, выдерживать многократное попеременное замораживание и оттаивание без значительных признаков разрушения и снижения прочности. От морозостойкости в основном зависит долговечность материалов, применяемых в наружных зонах конструкций различных зданий и сооружений. Разрушение материала при таких циклических воздействиях связано с появлением в нем напряжений, вызванных как односторонним давлением растущих кристаллов льда в порах материала, так и все сторонним гидростатическим давлением воды, вызванным увеличением объема при образовании льда на 9% (плотность воды равна 1 г/см3, а льда — 0,917 г/см3). При этом давление на стенки пор может достигать при некоторых условиях сотен МПа. Очевидно, что при полном заполнении всех пор и капилляров пористого материала водой разрушение может наступить даже при однократном замораживании. Однако у многих пористых материалов вода не может заполнить весь объем доступных пор, поэтому образующийся при замерзании воды лед имеет свободное пространство для расширения. При насыщении пористого материала в воде в основном заполняются водой макрокапилляры, а микрокапилляры при этом заполняются водой частично и служат резервными порами, куда отжимается вода в процессе замораживания.

При работе пористого материала в атмосферных условиях (наземные конструкции) водой заполняются в основном микрокапилляры за счет сорбции водяных паров из окружающего воздуха; крупные же поры и макрокапилляры являются резервными. Следовательно, морозостойкость пористых материалов определяется величиной и характером пористости и условиями эксплуатации изготовленных из них конструкций. Она тем выше, чем меньше водопоглощение и больше прочность материала при растяжении. Учитывая неоднородность строения материала и неравномерность распределения в нем воды, удовлетворительную морозостойкость можно ожидать у пористых материалов, имеющих объемное водопоглощение не более 80 % объема пор (Кн<0,8). Разрушение материала наступает только после многократного попеременного замораживания и оттаивания.

Морозостойкость характеризуется числом циклов по переменного замораживания при -15 —-17 °С и оттаивания в воде при температуре около 20 °С.

 

Выбор температуры замораживания не выше —15, —17 оС вызван тем, что при более высокой температуре вода, находящаяся в мелких порах и капиллярах, не может вся замерзнуть. Число циклов (марка), которые должен выдерживать материал, зависит от условий его будущей службы в сооружении, климатических условий и указывается в ДБНах (СНиПах) и ГОСТах на материалы.



 
     
© 2010 - 2016 stroy-tip.ru