Химические свойства характеризуют способность материала вступать в химическое взаимодействие с веществами внешней среды, в которой он находится, или сохранять свой состав и структуру в условиях инертной окружающей среды. Последнее связано с тем, что некоторые материалы за счет неустановившегося равновесия внутренних химических связей склонны к самопроизвольным структурным изменениям («старению»). Оба явления могут изменить первоначальные основные свойства материала, иногда улучшая (например, взаимодействие вяжущих веществ с водой), а в большинстве случаев ухудшая показатели свойств, что приводит к уменьшению срока нормальной службы конструкций или сооружений (например, разрушение бетонных конструкций агрессивными жидкостями и газами, старение пластмасс).
Приведу некоторые из них.
Дисперсность — характеристика размеров твердых частиц и капель жидкости. Многие строительные материалы (гипсовые вяжущие, цемент, глины, пигменты и т. п.) находятся в тонкоизмельченном (дисперсном) состоянии и обладают большой суммарной поверхностью частиц. Величина, характеризующая степень раздробленности материала и развитости его поверхности, называется удельной поверхностью — поверхность единицы объема (см2/см3) или массы (см2/г) материала.
Физико-химические свойства поверхностного слоя дисперсных частиц сильно отличаются от свойств этого же вещества «в массе». Причина этого в том, что атомы (молекулы) вещества, находящиеся внутри материала, уравновешены действием окружающих атомов (молекул), в то время как атомы (молекулы) на поверхности вещества находятся в неуравновешенном состоянии и обладают особым запасом энергии. С увеличением удельной поверхности вещества возрастает его химическая активность (например, цемент с удельной поверхностью 3000...3500 см2/г через 1 сутки твердения связывает 10... 13 % воды, а с удельной поверхностью 4500...5000 см2/г — около 18 %).
Адгезия— свойство одного материала прилипать к поверхности другого. Адгезия двух различных материалов зависит от природы материала, формы и состояния поверхности, условий контакта и т. д. Она появляется и развивается в результате сложных поверхностных явлений, возникающих на границе раздела фаз, и характеризуется прочностью сцепления при отрыве одного материала от другого. Важное значение адгезионные свойства имеют при получении композиционных материалов и изделий (бетонов разных видов, клееных изделий и конструкций, отделочных материалов).
Многие строительные материалы в процессе их изготовления и применения проходят стадию пластично-вязкого состояния (гипсовое, цементное, глиняное тесто, свежеприготовленные растворные и бетонные смеси, мастики, формуемые материалы из полимеров и т. д.). По своим физическим свойствам пластично-вязкие тела занимают промежуточное положение между жидкими и твердыми телами. Так тесто можно разрезать ножом (что нельзя сделать с жидкостью), но вместе с тем это же тесто принимает форму сосуда, в который оно помещено, т. е. ведет себя, как жидкость. Пластично-вязкие смеси характеризуют реологическими показателями — структурной прочностью, вязкостью и тиксотропией.
Структурная прочность — прочность внутренних связей между частицами материала. Ее оценивают пре дельным напряжением сдвига, соответствующим напряжению в материале, при котором он начинает течь подобно жидкости. Это происходит тогда, когда в материале нарушаются внутренние связи между его частицами — разрушается его структура.
Вязкость — способность материала поглощать механическую энергию при деформировании образцов. Когда пластично-вязкий материал начинает течь, напряжения в материале зависят уже от скорости его деформации. Коэффициент пропорциональности, связывающий скорость деформации и необходимое для этого напряжение, называют вязкостью г/ (Па-с).
Тиксотропия — способность пластично-вязких смесей обратимо восстанавливать свою структуру, разрушенную механическими воздействиями. Физическая основа тиксотропии — разрушение структурных связей внутри пластично-вязкого материала, при этом материал теряет структурную прочность и «превращается в вязкую жидкость, а после прекращения механического воздействия материал обретает структурную прочность. Явление тиксотропии используют при виброуплотнении бетонных и растворных смесей, при нанесении мастичных и окрасочных составов шпателем или кистью и т. д.
Химическая стойкость — свойство материала сопротивляться действию агрессивной среды. Агрессивная среда (кислоты, щелочи, растворы солей, газы), взаимодействуя с материалом, может вызвать его разрушение (коррозию). Степень разрушения зависит от многих факторов и прежде всего от состава материала и его плотности. Коррозионную стой кость оценивают химическим анализом. Для приближен ной оценки химической стойкости материала в кислых и щелочных средах можно воспользоваться модулем основности М0:
1.25
При небольшом модуле основности, когда в неорганическом материале преобладает кремнезем, наблюдается высокая стойкость к кислотам. Когда в составе не органического материала преобладают основные оксиды и модуль основности достаточно высок, то этот материал обычно нестоек к кислотам, но щелочами не разрушается. Органические материалы (древесина, битумы, пластмассы) при обычных температурах относительно стойки к действию слабых кислот и щелочной среды. Однако значительная часть строительных материалов не обладает достаточной стойкостью к действию агрессивной среды и требует специальной защиты от коррозии.
|