Главная | СНиПы | Контакты
 Справочник строительных материалов

Навигация: Главная Керамика Сушка керамических изделий

Главное меню
Последние материалы
Сушка керамических изделий

Сушка –  один из основных процессов, применяемых для всех керамических изделий. От нее зависит их качество, экономика производства (10...12% от стоимости). Капитальные вложения на установку сушильного агрегата увеличиваются с увеличением продолжительности сушки. Удлиняется весь технологический цикл (узкое место). Следует ускорять сушку, не допуская трещин.

Теоретические основы сушки. При сушке глины происходит не только снижение влажности, но и изменение ее физико-механических свойств. Пересушенная до потери химически связанной воды глина теряет связующую способность. Неравномерная влажность вызывает растрескивание в сушке и в обжиге. Скрытые дефекты формования (например, свиль) могут быть причиной трещин в сушке, а при правильном режиме сушки могут не влиять на качество изделий. Пересушенные изделия не выдерживают легких ударов из-за хрупкости.

Изменение влагосодержания и температуры материала при сушке. В начале сушки из-за разности парциальных давлений водяных паров на поверхности изделия и в окружающем воздухе влага начинает испаряться с поверхности материала. Из-за перепада влагосодержания в нем появляется поток влаги от центра к периферии. Если пары внутри изделия не успевают удаляться, происходит его разрыв от избыточного давления (может быть уже при 70°C). Поэтому скорость сушки должна обеспечивать выход влаги, которая распределяется в изделии параболически. Сушку прекращают, когда во всех изделиях влагосодержание станет равновесным с влагосодержанием окружающей среды, до которого они могут быть высушены. Влагосодержание зависит от свойств материала: с увеличением количества глины оно возрастает и сушка удлиняется. Добавка отощителя ускоряет ее. Нельзя выгружать материал с остаточным влагосодержанием ниже равновесной влаги в цехе. Это способствует образованию трещин за счет поглощения влаги из воздуха и неравномерного распределения ее в изделиях.

Усадочные деформации и трещины. Усадка глин при сушке – причина образования трещин. Вначале высушиваются кромки и наружные слои изделия. При этом поверхностные силы, стремящиеся сократить размеры изделия, создают на внутренние слои сжимающее действие, а на наружные – растягивающее, они растрескиваются. Трещины могут быть наружные и внутренние. Механизм их возникновения следующий. Наружные слои, достигнув равномерного влагосодержания, не дают усадки. А внутренние слои, продолжая снижение влагосодержания, дают усадку. Поскольку между наружным и внутренним слоями существует жесткая связь, это вызывает растягивающие напряжения в центральных слоях изделия (трещины внутри изделия или видимые, не доходящие до краев). Если изделие с одной стороны сохнет быстрее, чем с другой, появляются изгибы (деформации) в сторону максимальной скорости удаления влаги. Это происходит даже у глиняного кирпича с толстыми стенками.

Определение длительности и режима сушки. Длительность сушки зависит от температуры, относительной влажности, влагосодержания, скорости движения теплоносителя. Сочетание этих показателей и их динамику называют режимом сушки. Оптимальный режим должен обеспечить быстрое высушивание изделий до требуемой влажности без деформаций и трещин при наименьших затратах энергии.

Существуют три метода подбора режимов сушки:

  1. Экспериментальный (метод «проб»). Пробуют несколько режимов (не вдаваясь в сущность причин образования дефектов) и считают оптимальным режим, обеспечивающий минимальный срок сушки данных изделий без дефектов. Это длительный и дорогостоящий метод, не всегда наилучший.
  2. По данным о физической сущности образования дефектов составляют уравнения, описывающие процесс. Находят экспериментально свойства, входящие в уравнение, и по ним рассчитывают оптимальный режим.
  3. По уравнениям, описывающим процесс образования дефектов, составляют критерии подобия, которые затем находят экспериментально и по ним рассчитывают параметры сушки.

Главная причина возникновения трещин – достижение предельных перепадов влагосодержания между центром изделия и поверхностью, при которых напряжения превосходят предел прочности материала. Следовательно, задача расчета сводится к определению минимальной длительности сушки, при которой перепады влагосодержания не будут достигать критических величин.


Для штабельной сушки ВНИИстромом разработан метод определения режима сушки, основанный на теории вероятности. Его порядок следующий:

  1. Замеряют производительность вытяжных вентиляторов (V2), среднюю температуру теплоносителя на входе в сушилку t1, на выходе t2 и температуру воздуха t0, подсасываемого на загрузочных торцах туннеля.

Меры предотвращения пороков сушки. Зависимость трещиностойкости от факторов, влияющих на нее, можно выразить в виде:

,                                                        (6)

где R и ε – прочность и растяжимость материала; а – коэффициент потенциалопроводимости; Рс и Рп – упругость пара в окружающей среде и на поверхности изделия, α и αy – коэффициенты внешнего влагообмена и усадки.

Таким образом, увеличивая характеристики числителя и снижая – знаменателя, можно повысить трещиностойкость следующими мероприятиями.

Паровое увлажнение глины увеличивает начальную температуру глины и ее потенциалопроводимость, ускоряет сушку вследствие совпадения направлений потока тепла и влаги в материале. При отсутствии пароувлажнения вначале идет не сушка, а доувлажнение изделий за счет конденсации влаги из теплоносителя (скорость сушки отрицательна). Изделия, сформованные из пароувлажненной глины, начинают сохнуть сразу, с первого момента сушки.

Подогрев глины в сушильном барабане ускоряет сушку аналогично пароувлажнению. Это целесообразно при влажности материала выше формовочной.

Отощение глин снижает усадку и позволяет ускорить сушку без трещинообразования, увеличить потенциалопроводимость материала. Добавка опилок – наиболее эффективный способ повышения трещиностойкости кирпича, что объясняется их армирующим действием (длина опилок больше длины глинистых частиц), ростом прочности изделия и увеличением потенциалопроводимости.

Вакуумирование глин увеличивает их пластичность, растяжимость и прочность сырца, позволяет применять более жесткие режимы сушки.

Добавка гипса в глину тоже повышает прочность предельного напряжения сдвига. Добавки керосина (0,5% от массы сухой глины) действуют как ПАВ и увеличивают влагопроводимость, ускоряя сушку.

Добавки высокопластичных глин повышают прочность, что важно для плоских тонкостенных изделий (черепицы). При добавке в шликер устраняют трещины в отливках. Рециркуляция теплоносителя повышает давление водяных паров (Рс), замедляя влагообмен и перепад влагосодержания по толщине изделия.

 
     
© 2010 - 2016 stroy-tip.ru