Главная | СНиПы | Контакты
 Справочник строительных материалов

Навигация: Главная Керамика Керамзит

Главное меню
Последние материалы
Керамзит
Индекс материала
Керамзит
продолжение
Все страницы

Материалы керамзитовой структуры – это новая группа керамических строительных материалов. При производстве других изделий в обжиге достигают плотного спекания керамики, повышающего прочность, а керамзит получают вспучиванием при обжиге глиняной массы для повышения пористости. Вспучивание – это увеличение материала в объеме за счет образования внутренних, чаще замкнутых, пор. На изломе вспученный материал имеет структуру застывшей пены. Керамзит разделяют на: гравий, щебень, песок и изделия на их основе. Наибольшее развитие получило производство керамзитового гравия, который обычно именуется просто керамзитом. Керамзитовый гравий был запатентован Стефаном Хейдом (США, 1918 г.) и известен за рубежом под названием хайдита. В СССР опытные работы по его получению были начаты в 20-х годах XIX в. Е.В. Костырко, а в послевоенные годы продолжены С. П. Онацким [33]. Опытное производство керамзита было организовано в нашей стране в 1939 г., но промышленное производство начато в 1950-х годах, в 1965 г. было выпущено 6,3, а в 1970 г. – 13 млн м3.

Керамзитовый гравий применяется как заполнитель легких бетонов, имеющий более высокие теплозащитные свойства, что дает возможность уменьшить толщину и массу наружных стен, а это ведет к снижению потерь тепла в окружающую среду и индустриализации строительства. Каждые 10% уменьшения массы конструкции снижают ее стоимость на 3%. Таким образом, переход от тяжелых бетонов с плотностью до 2400 кг/м3 к легким бетонам плотностью 1200…1400 кг/м3 (до 1800 кг/м3) является существенным источником снижения себестоимости строительства. Этим объясняется большой объем выпуска и применения керамзита в нашей стране. В нашей области керамзит и на его основе – керамзитобетонные стеновые панели, более легкие и теплоизоляционные, чем шлакопемзовые, выпускает Елецкий керамзитовый комбинат. Недостаток керамзита – повышенные энергозатраты на обжиг и насыпная плотность (до 800 кг/м3). Поэтому ведутся работы по производству трепельного гравия, имеющего насыпную плотность 300…400 кг/м3. Запасы трепельных глин имеются в нашей и в Тамбовской области. Применение такого гравия позволит получать бетоны с плотностью не выше 900 кг/м3 и выйти на мировой уровень по теплоизоляции ограждающих конструкций.

Свойства керамзита регламентированы ГОСТ 9579-90 [12]. Основными являются плотность зерен, насыпная плотность, коэффициент формы, морозостойкость, прочность. Плотность зерен (в куске), кг/м3, определяют по отношению массы высушенного при 110°С образца к его объему вместе с порами и пустотами. По насыпной плотности по ГОСТ 9579-90 различают 12 марок керамзита, а по прочности – два класса (таблица 8.1).

Таблица 8.1. Свойства керамзита

Марки гравия по плотности

Прочность гра­вия для классов, МПа

Водопоглощение по массе в течение 1 ч, %, не более

Марки гравия по плотности

Прочность гравия для классов, МПа

Водопоглощение по массе в те­чение 1 ч, %, не более

А

Б

А

Б

150

200

250 300

350

 

400

0,4

0,5

0,8

1,0; 1,4; 1,7

0,3

0,4

0,6

0,8

 

1,0

1,4

25

25

25

25

 

25

25

450

500

550

600

 

700

800

2,0

2,5

3,0

3,5

 

4,5

6,0

1,7

2,0

2,3

3,0

 

3,0

4,0

20

20

20

20

 

15

15

 

Показателем прочности керамзита является сопротивление сжатию порции керамзита, насыпанной в стальной цилиндр, при сдавливании ее поршнем на глубину 20 мм. По размерам зерен различают три фракции: 5…10, 10…20 и 20…40 мм . Керамзит с крупностью зерен менее 5 мм относится к керамзитовому песку. Марка по морозостойкости керамзита должна быть не ниже F15 с потерей массы не более 8%. Потеря массы после 4-часового кипячения не должна превышать 5%, а отпускная влажность не должна составлять более 20 %. Большое влияние на качество керамзита как заполнителя бетона оказывает коэффициент формы зерен, т. е. отношение максимального размера зерна к минимальному. По ГОСТ она должна быть не более 1,5. Содержание в гравии расколотых зерен не должно превышать по массе 15%. Методы испытаний ке­рамзитового гравия регламентированы ГОСТ 9758.

Большое значение имеет однородность свойств керамзита. От­дельные чрезмерно легкие и наименее прочные зерна в партии керамзита, не уменьшая существенно его плотности, могут явиться в бетоне начальными очагами разрушения. Тяжелые зерна, не увеличивая общую прочность бетона, обра­зуют «мостики холода», ухудшая его теплозащитные свойства. Качество готовой продукции на предприятии оценивают по коэффициенту однородности керамзита.

Основы теории вспучивания глин изучают закономерности процесса вспучивания глиняных гранул. Они состоят в следующем. Во время нагревания глиняной гранулы (рис. 8.1) при достижении определенной температуры глиняная оболочка поры начнет размягчаться, спекаться, затем она уплотняется и становится газонепроницаемой, переходит в пиропластическое состояниие, т. е. становится способной к пластическим деформациям без разрыва сплошности. Если в этот момент внутри шарика начнут выделяться газы, то, не имея выхода через обо­лочку, они будут создавать во внутренней полости шарика избыточное давление, под действием которого размягченная оболочка будет расширяться. Так происходит вспучивание элементарной ячейки глины, которое приводит к вспучиванию гранулы. Следует учитывать и неравномерность прогрева: на поверхности нагрев происходит быстрее, чем в центре. Поэтому поверхность гранулы еще до того, как вся ее масса приобретет пиропластическое состояние, покрывается плотной спекшейся газонепроницаемой оболочкой, предотвращающей утечку газов из гранулы. Условием, обеспечивающим вспучивание глин при нагревании, является совмещение во времени пиропластического состояния глины с интенсивным газовыделением внутри гранул. Но каждый из этих факторов в отдельности не обеспечивает процесса вспучивания, необходимо, чтобы они действовали одновременно. Если же в этом температурном интервале интенсивность газовыделения опережает фильтрацию газов через поры гранулы, то внутреннее избыточное давление разрывает гранулу, так как, будучи в хрупком состоянии, она не способна к пластическим деформациям. Таким образом, глина, в которой по времени совпадает хрупкое состояние с интенсивным газовыделением, вспучиться не может. Не произойдет вспучивания и в том случае, если максимум газовыделения сдвигается в область слишком высоких температур. Тогда глина становится вязко-текучей с малой прочностью перегородок пор. Газы в порах под избыточным давлением разрывают их стенки и удаляются, не производя работы вспучивания. Опти­мальные условия для вспучивания достигаются, когда максимум интен­сивности газовыделения находится в температурном интервале размягчения глины. Для осуществления вспучивания глины она должна обладать газотворной способностью, иметь пиропластическое состояние, и эти факторы должны совпадать по времени. Изучение этих факторов и условий их совместного действия составляет теорию вспучивания глины.

Факторы газотворной способности глины в настоящее время имеют два вида толкований. По первому источники газотворной способности глины – это реакции разложения и восстановления оксидов железа при их взаимодействии с органическими примесями или добавками в глине [33, 36]:

6Fe2O3 = 4Fe3O4 + O2;

2Fe3O4 = 6FeO + О2;

Fe2O3 + С =2FeO + СО;

Fe2O3 + СО = 2FeO + СО2.

Этот взгляд подтверждается тем, что глины, содержащие значительное количество железистых и органических примесей, хорошо вспучиваются. Добавка в глину железистых примесей (например, пиритных огарков), а также органических веществ (уголь, соляровое масло, мазут, торф) увеличивает вспучиваемость глины. Однако указанные восстановительные реакции развиваются при температурах 750…900°С, которые существенно ниже темпе­ратур спекания глин (1150…1250°С), и протекают с очень большой скоростью [32]. При этом иногда вспучиваются глины, и не содержащие железистых примесей. Поэтому по второй гипотезе считается, что газообразная фаза при обжиге глин образуется за счет дегидратации слюдистых минералов, которые присутствуют в глинах в качестве примесей и распадаются, выделяя водяные пары при температурах, близких к температуре вспучивания глин. Железистым оксидам в этой гипотезе отводится вспомогательная роль – их присутствие облегчает и ускоряет распад слюдистых минералов.

Истина, скорее всего, находится на стыке двух гипотез, поскольку ни одна из них не учитывает влияние фактора времени и интенсивности теп­лообмена. В образовании газов, совершающих работу вспучивания, участвуют оба фактора. Благодаря наличию в толще обжигаемой гранулы температурного перепада спекшаяся газонепроницаемая наружная оболочка может возникнуть на ее поверхности прежде, чем центр гранулы прогреется до температуры начала восстановительных реакций. А когда центр гранулы прогреется до этой температуры, пары и газы восстановительных реакций, не имея выхода наружу, накапливаются в порах гранулы и вспучивают ее [36].

Факторами пиропластического состояния являются температура и интервал вспучивания, вязкость расплава и коэффициент вспучивания.

Пиропластическое состояние глины наступает при накоплении в ней достаточного количества жидкой фазы – силикатного расплава. Интенсивность этого накопления зависит от химического состава: она возрастает с увеличением содержания щелочей в глине и резко убывает с ростом количества свободного кварца. В связи с этим при химическом анализе глин для производства керамзита нужно фиксировать содержание свободных кремнезема и железа, которые обусловливают более растянутый интервал спекания глины и, как следствие, повышение ее вспучиваемости.

На этот процесс влияет и вид газовой среды: восстановительная среда резко интенсифицирует процесс. Это связано с переводом Fe2O3 в FeO в такой среде по приведенным выше реакциям. Важно иметь в виду, что процесс восстановления окисного железа в закисное сопровождается повышением молекулярной концентрации реагирующих оксидов: из одной молекулы Fe2O3 образуется 2FeO, и это интенсифицирует процесс перехода глины из хрупкого в пиропластическое состояние. Наиболее интенсивно он протекает в присутствии органических веществ. В глинах атомы железа могут входить в состав гидроокисей и в кристаллические решетки глинистых минералов. Влияние их на вспучиваемость глины не одинаково: наиболее благоприятно влияют оксиды, входящие в состав гидроокисей [ 33 ].

Интервал вспучивания – это разность между предельной температурой нагрева глины tпл и тем­пературой начала вспучивания глины tвсп:

t = tпл – tвсп. (8.1)

Температурой начала вспучивания считают температуру, при которой плотность зерен гранул равна 0,95 г/см3 . Предельной температурой обжига керамзита называют температуру начала оплавления поверхности гранул [32]. Интервал вспучивания глин для керамзита должен быть не менее 50°. Оптимальной для вспучивания является температура, при которой вязкость глины понижается до h = (5…8)·107 пз . Температуре начала вспучивания соответствует вязкость h = 109 пз .

Коэффициент вспучивания – это отношение объема вспученной гранулы к ее объему после сушки (до вспучивания). Его можно подсчитать по формуле:

Квсп = [рзг (1 – 0,01Пп) / рзк], (8.2)

где рзг и р3к – плотность зерен сухой гранулы и керамзита, г/см3; Пп – потери при прокаливании (п.п.п.), %.

На вспучиваемость глин влияет минералогический состав: наихудшей вспучиваемостью обладают каолинитовые глины; гидрослюдистые глины вспучиваются лучше, чем монтмориллонитовые, хотя бывает и наоборот.

Коэффициент выхода – это насыпной объем керамзитового гравия, полученного из 1 м3 сухих глиняных гранул. Он определяется по формуле:

Квых= [р0г (1 – 0,01Пп) / р0к], (8.3)

где р0г и р0к - насыпные плотности сухих и вспученных глиняных гранул, г/см3.

Связь между коэффициентами вспучивания и выхода определяется:

Квых = { Квсп (1 – 0,01Пп) [(100 – Vпк) / (100 – Vпг) · КндКно] )}, (8.4)

где Vпк и Vпг — объем межзерновых пустот соответственно глиняных гранул и керамзита, %; Кндкоэффициент неоднородности диаметра гранул, т. е. отношение насыпной массы смеси всех фракций керамзита к таковой для фракции 20…40 мм; Кнд = 1,2…1,3; Кно — коэффициент неравномерности обжига, учитывающий изменение из-за этого плотности керамзита; Кно=1,35.

Анализ формулы (8.4) показывает, что коэффициент выхода всегда ниже коэффициента вспучивания, поэтому насыпную плотность керамзита в производственных условиях оценивают по коэффициенту вспучивания.

Добавки в глину в производстве керамзита вводятся в слабовспучивающиеся глины в количествах, мас.%: пыль железной руды или пиритных огарков – 2…4, глина охристая или огнеупорная – 10…20, опилки – 2...4, каменный уголь (молотый) – 1…2, торф или ССБ – 2…4, масло соляровое или мазут – 1…3. Огнеупорная глина расширяет интервал вспучивания, опилки и ССБ повышают трещиностойкость гранул, остальные повышают вспучиваемость.

Технология производства керамзитового гравия состоит из карьерных работ, обработки глины, формования и сушки гранул, обжига, охлаждения и сортировки керамзита. Карьерные работы в производстве керамзита не имеют особой специфики, но усреднение состава глины вылеживанием важнее, чем для стеновой керамики.



 
     
© 2010 - 2016 stroy-tip.ru